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We present a thermodynamic treatment of superfluid helium in the presence of an applied heat
current, Q, which produces a counterflow velocity W. Using a thermodynamic expression
relating the heat capacity to the depression of p; with W, we find that near 7’3 » the heat capacity
is expected to diverge at adepressed transition temperature. The exponent is found to be 0.5in

mean-field theory and in conventional renormalization group theory, In contrast, if W rather than

Q isheld constant, the heat capacity remains finite.
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Owing to the remarkable success of the renormalization group theory (R(i), phase transitions
at equilibrium arc to a large extent well understood. ~'hereis still much to be learncd, however,
concerning non-equilibrium and dynamic phenomena. Near the lambda point of 4He, an applied
heat flux @ can have aninteresting influence on the nature of the transition. A number of

experiments [ 1] report that the transition tcmperature is depressed. The depressed transition

temperature 7.(Q)scales with(Q as [7,- 'Q(Q)] - Q% . Theories [2] predict that
x = 1 / (2v)=0.746, whercv=0.6705[3]isthe correlation length exponent.  Recently,
1 laussmann and Dohm (I 1D) [4] have applied RG to this problem and predicted cusp shape curves
[5] for the superfluid density and the heat capacity at various values of constant O near 7.(Q).
However, it was pointed out [6] that the heat capacity anomalies predicted by HID are not
consistent with the result of a simple thermodynamic calculation at constant Q. J111 responded
[6] that their heat capacities were, in fact, calculated at constant superfluid velocity. ‘I"his draws
our attention to the fact that the basic thermodynamics of this system is not widely understood.
Itis the intent of this paper to fill in this gap. Surprisingly, when we. recalculate the heat
capacity properly, it diverges at 7. ((2) even in mean-field theory.

Liquid helium in the presence of a counterflow can be treated as a system that exhibits an
extra degree of thermodynamic freedom. This is a unique case in which a dynamic situation may
be treated by equilibrium thermodynamic analysis, Insuperfluid helium, the first law of

thermodynamics at constant density may be. written as [7]:

dI*=1dS+ W.dj,, )



where E’ is the internal energy in a reference frame traveling with the superfluid, W =%, — ¥, is
the velocity of the normal fluid in that frame, and fn = p,,Wis the normal fluid momentum
density. The term w. d]'n is the work per unit volume required to set the normal fluid into
motion. Thus the new conjugate variables in superfluid arc (W, fo ). Most phase transition
theories, to which we wish to compare our results, assume that the normal fluid is at rest. The

internal energy in the normal fluid frame £” can be obtained using the Galilean transformation

[7] E"=ES+pW?/2—-j . W, giving
dE" = TdS+ P e dW )

where P = p,W. Thus in the normal fluid frame the new conjugate pair is (P, W). The free

energy is F(T, W) = En -7 giving:

dF =~SdT + P edW

w
F(T, W)= F(T,00+ [ p, (W)W ed¥ ©
0

We henceforth drop the vector notation because all motions are in the same direction in the case
we treat. The term F(T, O) contains all the characteristics of the phase transition at zero W,
which has been well studied both experimentally and theoretically. At a finite W the only
unknown is the function p, (W). Qualitatively, if p, is only weakly depressed, the integral in

cg. (3) can be approximated by ps(O)W2 /2, The dashed line in Figure 1 shows F(7', W) for this

case. On the other hand, f p, is significantly depressed (Fig. 1d), the ntegrand in eq.(3),




p. (W)W, increases with W at small W, but might decrease at large W (Fig. Ib). As shown
by the solid line in Fig. 1 c, a critical counterflow velocity W, exists when F(7,W) changes
from convex to concave [8]. This point is aso the point where p, (W)W is maximum. As we
shall see below, if p, (W) is sufficiently depressed to reach this point, a thermodynamic phase

transition occurs.

The depression of p, cannot be derived by thermodynamic arguments. It must be measured

experiment.aly, calculated from microscopic. theory, or obtained from phase transition theory near

7', . Experimentally, not much is known about p, (W). The only experimental evidence to date
is the observation by Hess [9] far from T, , which agrees with the roton theory. Near 7, , only
theoretical predictions exist. The three existing theories are. the mean-field theory [ 10], the v
theory [11 ], and the RG theory of HD [4]. Since. we will use the p, (W) expression from these

theories to compute the heat capacity, it is desirable to show that the theories are consistent with

thermod ynamics. These theories al start from a mean-field expansion:

Foy=olyl -t Bly|"+ (n2f2m )V y* + Mlyl". @

It is not clear that F,,, obeys eq. (3). Here &, f and M are expansion coefficients, M is zero
except in the y theory, the macroscopic wave function is given by y = ne'®, where p,= m[ 1//[2

and v, = (h/m)V¢, and m is the mass of a helium atom. In terms of p, and v,:

2 )2 2 2 2 3
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where the term p,v2 /2 is added to account for the motion of the normal fluid. A controversy
exists in the literature concerning the proper procedure for minimizing #,, with respect to y (or
p,)- Pitaevskii [12] minimizes Foy while holding the momentum j = P+ pv, constant. Here,
F,, is afree energy in the laboratory frame. Khalatnikov [13] uses a Galilean transformation to
obtain a free energy in the normal fluid frame:

pr = 20 B0 LW K p, ) MpS

. 6
m m? 2 8n12ps m* ©

He then minimizes F,,; holding W constant. To show that this is the correct approach, we note

that F,, varies with W through p,w) and the term PSW2/2-Thu5

dFpy _ | dp, (W) , 9Fny
aw =~ dp, |, AW W

Ps

From eqg. (6), (6’ "of /8W)p1= p.w) W. The optimization condition is (c?F,',’,f /éps)wz O. Thus

eg. (7) and eqg. (3) become the same, proving consistency with thermodynamics.
In uniform flow, Vp, = O. The expression for p,(W) is obtained by optimizing -

All three theories give p,(W) of the form:

ps (W) =ps(0)f(x), ®




where k= W/W, and W,isa characteristic velocity give by W, = h/ m{. BelowT, ,

E7E,(21)"", where €0=1.43x10-8cm [14]. The characteristic velocity W, can be expressed as

W, = W,t', where W, = n2"/mé,= 175.4 mkt. For the mean-field theory, f(x)=1-2«~

, 1-M 1 |(1-MY 4( 6+2M zj : .
For ti thcor K)=———+—4|/| ——-| +—|1—-———k"|. Yor HD, K) is
or the y theory f(x) Y 2\[( ) Y 3 f(x) i

given byeqgs 512, C11andC3 in ref. 3. All three theories predict that p, is sufficiently

depressed for a phase transition to occur.

Next wc compute the heat capacity using p,(W) from thesc theories. Wc first treat the
case where Wis held constant. Experimentally, this might be the case of a persistent superfluid
current flowing around a loop, similar to the superfluid gyroscope cxperiment demonstrated by

Clew and Reppy [15]. From cg. (3) above:

K
AF(T,W) = F(T,W) = F(T,0) = p (0) W} j xf (x)dx 9)
0
2 sy
o AF
The heat capacity is changed by ACy, =-TV 7 %%«M , where V= 27.38 cn~/mole [ 16] is
w

the molar volume. Using p,(0) =P, 1°, where p,= 0.370 gm/cm3 [ 17], together with the

scaling relation { = v= (2—t)/3, wc obtain:

K
ACy1° :~C{,v%(3v»1)_[ X (x)dx - (4 v- DK f(K)+ W Qf()ﬁ;)} (10)

0

where C,=Vp, W2 /T, =143 (J/ mole K). Yor the mean-field theory, this reduccs to:




ACy™ = C,vi? [1= )+ 1+ v)x?] 2. (11)

For the y thcory and for HD, equation ( 10) is evaluated using numerical differentiation and
integration.  These results arc shown in Fig. 2a  C,, approaches a finite constant at

kK.=WC /W, in al three theories.

It is experimentally feasible to measure the heat capacity in athermal conductivity cell while

passing a constant heat flux Q through it, where
0=p (W)WST, (12)

and S =1.58 J/gm K [18] is the entropy. Therefore, keeping Q constant is the same as keeping

P=p (W)W constant. At constant 7, it iS nccessary to define &(7, P) = (7, W) — W],
w

giving d® = —8dT -- WdP and AD(T, P) =T, P) - O(T,0) = - ﬁVd(ps W). Thus the heat
J
0

capacity can be computed as:

AC, = —7'v[aqu>(7',1')/a'1'2] .

. (13

Although AC,, is finite, AC, diverges at a critical heat current, Q.. The reason may be
seen directly from thermodynamics. Starting from the entropy S(T, W), wc obtained the

relations:



ds = (9S/dT),, dT + (dS/dW),. dw (14)

W

Co = T(38/IT), = Cyy + T(3S/IW), (aW/IT),, (15)

From cq. (3), dF =—SdT + PdW, we obtained a Maxwell relation (9P/dT),, = - (IS/IW),

“1'hus,

Co=Cy-T(0P/0T),, (oW[IT),, . (16)

Here we have made use of cq. (12) to obtain the relation (E)W/&’I‘)Q:(()W/(N')P.Using the

chain rule:

(9P/a1),, (9T/IW) (aw[aP), = -1, (17)
Co = Cy + T(IP/IT),, [(OP)OW), . (18)

The phase transition occurs when (()214‘/9W2)T :(c)l’/aW),[,:O. Thus C, diverges at this

point. This result must be true for any theory that depresses p, enough to reach (P/dW), =0,

including al three theories discussed here. liquation (18) gives,

[ 2
A g a2 2 KA (K IKf(x) 19
ACH=ACy+ Cyt = v K'[- P f(K)] / Py (19)



‘I'he results can be expressed in terms of the variable ¢ =Q/Q,using the relation

q= ,(f(,()/[ x.f(x,)] obtained from eq. (12). The values for x, f(x,), and Q. /1% arc listed

in“l'ablel. For the mean-field theory:

laACQ - C V;[£v+])+5(3.V_1,)fzj:M

[

2.(1 ~6K2) (20)

=(C, /2 v+ K2 f2(k,)g?[140.965¢%+...],
of

atsmall g. Figure 2b shows that al three theories give a divergent Cg- Again the results for
the y theory and the HD theory arc obtained numerically. Because (. is different for the three
theories, wc have used Q/ QZ”) as the x-axis, so that all three theories can be plotted on the same

scale. 1 lere QP is the critical heat current given by HD. Near Q.,cq. (18) gives

Cp - 1/(0P/oW), . We can expand P about P, the Superfluid momentum a the phase

transition:
e r (), w3 S v -
Since (9r/aW),, =0, and (azp/awz)w <0, (P,-P) - (W.- Wy, and (ar/oW),. -
(W, - W). Thus:
Co - 1/(W, -W) = 1/\[P.~ P ~(Q.-Q " (22)
9




where the exponent 1 =0.5. We have verified numerically that all three theories arc consistent

with this prediction. It is easy to show that if wc define 0 =[7.(Q)—T]/7.(Q), then

Co -0-". (23)

In conclusion, our analysis has lead to a number of surprising results. There exists near 7/, ,
inthe 7'— Q plane, a curve 7. (Q) that is apparently a new line of critical points, at which the
heat capacity, C, diverges according to eq.(23). Unlike other familiar phase transitions, the
heat capacity divergence in this case is predicted by mean-field theory, and indecd, the exponent
u=1/2 can be arrived at by the mean-field type argument that leads to cg. (22). It may seem
surprising that the mean-field value for u also results from the RG theory of HD[ 19], but perhaps

that means their theory only deals with critical point behavior at the lambda-point, 1 = O, not on

the line 7. (Q), where 8 = O. Because of fluctuations, onc dots not expect the mecan-field theory

exponent to be correct.

Lxperimental measurements of C, near 7, (Q) arc urgently nceded. As our arguments have

shown, they would constitute the first information concerning how p, depends on W near 7', .

Existing experiments | 1] show that dissipationdue to vortex formation [20] tends to set in at

Q10" - 0., except perhaps very close to7;, where Q. isverysmall. However, Fig.2b

shows that alarge effect ( AC,, -3 Jmole K) may be expected even at 0/ Q" -0.5.

1inall y, wc speculate that this ncw phase transition involves fluctuations of a different order

parameter, perhaps W or W — WC, with conjugate field P or P ~ PC, implying a different

universality class from the conventional lambda transition. l.arge fluctuations in W at constant

10




f2 (or P) are to be expected near the point (dP/dW), = O. On the other hand, in spite of the

agreement betwecen the theories discussed here, it is also possible that p, (W) is never sufficiently

depressed to reach the point (9P/ (9W)7. = O, anti superflow thus breaks up in some other way.
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FIGURL, CAPTIONS AND TAB] .E

Figure 1. A plot of &) p,w) /p, (0); b) Wp, (W) 1p,(0); and c) The free energy for the cases
where: dashed line - p, is not depressed; and solid line - p,is depressed sufficiently for the onset

of a phase transition at WC. Thisillustration is the result of the mean-field theory.

Figure 2: Change in the heat capacity times * at @) constant W, and b) constant Q. Thin
line - 1 ID theory, thick line - mean-field theory, triangles - y theory with M =1, dashed line -

P, not depressed by W as discussed in ref. [6].

Table I: A summary of ke, f(kc)for the three theories (M=:1for the y theory).

Mean-Field | y Theory | HD Theory
Ke 1/+/6 0.433 0.397
J(K) 2/3 0.707 0.790
0./ 1" (Wiem?) 6082 6842 7007
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